3.7.53 \(\int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx\) [653]

Optimal. Leaf size=249 \[ -\frac {2 b \left (7 a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{15 a^3 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+8 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 a^3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {8 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt {\sec (c+d x)}} \]

[Out]

-2/15*b*(7*a^2+8*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)*(a/
(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/a^3/d/(a+b*sec(d*x+c))^(1/2)+2/5*sin(d*x+c)*(a+b
*sec(d*x+c))^(1/2)/a/d/sec(d*x+c)^(3/2)-8/15*b*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a^2/d/sec(d*x+c)^(1/2)+2/15*(
9*a^2+8*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1
/2))*(a+b*sec(d*x+c))^(1/2)/a^3/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.40, antiderivative size = 249, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3948, 4189, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \begin {gather*} -\frac {8 b \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{15 a^2 d \sqrt {\sec (c+d x)}}-\frac {2 b \left (7 a^2+8 b^2\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 a^3 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 a^3 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 a d \sec ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sec[c + d*x]^(5/2)*Sqrt[a + b*Sec[c + d*x]]),x]

[Out]

(-2*b*(7*a^2 + 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*
x]])/(15*a^3*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(9*a^2 + 8*b^2)*EllipticE[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[a + b
*Sec[c + d*x]])/(15*a^3*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*Sqrt[a + b*Sec[c + d*x]]
*Sin[c + d*x])/(5*a*d*Sec[c + d*x]^(3/2)) - (8*b*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(15*a^2*d*Sqrt[Sec[c +
 d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3948

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[Cos[e +
 f*x]*(d*Csc[e + f*x])^(n + 1)*(Sqrt[a + b*Csc[e + f*x]]/(a*d*f*n)), x] + Dist[1/(2*a*d*n), Int[((d*Csc[e + f*
x])^(n + 1)/Sqrt[a + b*Csc[e + f*x]])*Simp[(-b)*(2*n + 1) + 2*a*(n + 1)*Csc[e + f*x] + b*(2*n + 3)*Csc[e + f*x
]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps

\begin {align*} \int \frac {1}{\sec ^{\frac {5}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx &=\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {4 b-3 a \sec (c+d x)-2 b \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx}{5 a}\\ &=\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {8 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt {\sec (c+d x)}}+\frac {2 \int \frac {\frac {1}{2} \left (9 a^2+8 b^2\right )+a b \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{15 a^2}\\ &=\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {8 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt {\sec (c+d x)}}-\frac {\left (b \left (7 a^2+8 b^2\right )\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 a^3}+\frac {\left (9 a^2+8 b^2\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{15 a^3}\\ &=\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {8 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt {\sec (c+d x)}}-\frac {\left (b \left (7 a^2+8 b^2\right ) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{15 a^3 \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{15 a^3 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}}\\ &=\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {8 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt {\sec (c+d x)}}-\frac {\left (b \left (7 a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{15 a^3 \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (9 a^2+8 b^2\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{15 a^3 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}\\ &=-\frac {2 b \left (7 a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{15 a^3 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2+8 b^2\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 a^3 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 a d \sec ^{\frac {3}{2}}(c+d x)}-\frac {8 b \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a^2 d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.52, size = 193, normalized size = 0.78 \begin {gather*} \frac {\sqrt {\sec (c+d x)} \left (4 \left (9 a^3+9 a^2 b+8 a b^2+8 b^3\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )-4 b \left (7 a^2+8 b^2\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} F\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+2 a \left (3 a^2-8 b^2-2 a b \cos (c+d x)+3 a^2 \cos (2 (c+d x))\right ) \sin (c+d x)\right )}{30 a^3 d \sqrt {a+b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sec[c + d*x]^(5/2)*Sqrt[a + b*Sec[c + d*x]]),x]

[Out]

(Sqrt[Sec[c + d*x]]*(4*(9*a^3 + 9*a^2*b + 8*a*b^2 + 8*b^3)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticE[(c + d
*x)/2, (2*a)/(a + b)] - 4*b*(7*a^2 + 8*b^2)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a
 + b)] + 2*a*(3*a^2 - 8*b^2 - 2*a*b*Cos[c + d*x] + 3*a^2*Cos[2*(c + d*x)])*Sin[c + d*x]))/(30*a^3*d*Sqrt[a + b
*Sec[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1735\) vs. \(2(279)=558\).
time = 0.22, size = 1736, normalized size = 6.97

method result size
default \(\text {Expression too large to display}\) \(1736\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/15/d*((b+a*cos(d*x+c))/cos(d*x+c))^(1/2)*(9*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(
1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a
^3-8*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-
1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*b^3+2*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b
))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2
))*a^2*b*sin(d*x+c)-8*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos
(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^2*sin(d*x+c)-9*((b+a*cos(d*x+c))/(1+cos(d*x+
c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-
b))^(1/2))*a^2*b*sin(d*x+c)+8*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE
((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^2*sin(d*x+c)-8*((b+a*cos(d*x+c))/(1+
cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(
a+b)/(a-b))^(1/2))*b^3*sin(d*x+c)-8*((a-b)/(a+b))^(1/2)*b^3-cos(d*x+c)^3*((a-b)/(a+b))^(1/2)*a^2*b+4*cos(d*x+c
)^2*((a-b)/(a+b))^(1/2)*a*b^2+10*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^2*b-8*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a*b^2-9
*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+co
s(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3+2*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(
1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(
-(a+b)/(a-b))^(1/2))*a^2*b-8*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x
+c)))^(1/2)*EllipticF((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a*b^2-9*cos(d*x+c)*
sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((
a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^2*b+8*cos(d*x+c)*sin(d*x+c)*((b+a*cos(d*x+c))/(1+cos(d*x+
c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-
b))^(1/2))*a*b^2-9*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticF((-1+cos(d*
x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(1/2))*a^3*sin(d*x+c)+9*((b+a*cos(d*x+c))/(1+cos(d*x+c))/(
a+b))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*EllipticE((-1+cos(d*x+c))*((a-b)/(a+b))^(1/2)/sin(d*x+c),(-(a+b)/(a-b))^(
1/2))*a^3*sin(d*x+c)-9*((a-b)/(a+b))^(1/2)*a^2*b+4*((a-b)/(a+b))^(1/2)*a*b^2+3*cos(d*x+c)^4*((a-b)/(a+b))^(1/2
)*a^3+6*cos(d*x+c)^2*((a-b)/(a+b))^(1/2)*a^3-9*cos(d*x+c)*((a-b)/(a+b))^(1/2)*a^3+8*cos(d*x+c)*((a-b)/(a+b))^(
1/2)*b^3)*cos(d*x+c)^3*(1/cos(d*x+c))^(5/2)/sin(d*x+c)/(b+a*cos(d*x+c))/a^3/((a-b)/(a+b))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 1.77, size = 464, normalized size = 1.86 \begin {gather*} -\frac {4 \, \sqrt {2} {\left (-3 i \, a^{2} b - 4 i \, b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 4 \, \sqrt {2} {\left (3 i \, a^{2} b + 4 i \, b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + 3 \, \sqrt {2} {\left (-9 i \, a^{3} - 8 i \, a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + 3 \, \sqrt {2} {\left (9 i \, a^{3} + 8 i \, a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - \frac {6 \, {\left (3 \, a^{3} \cos \left (d x + c\right )^{2} - 4 \, a^{2} b \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{45 \, a^{4} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-1/45*(4*sqrt(2)*(-3*I*a^2*b - 4*I*b^3)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b -
8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + 4*sqrt(2)*(3*I*a^2*b + 4*I*b^3)*sqrt(a)*wei
erstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x +
 c) + 2*b)/a) + 3*sqrt(2)*(-9*I*a^3 - 8*I*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2
*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x +
c) + 3*I*a*sin(d*x + c) + 2*b)/a)) + 3*sqrt(2)*(9*I*a^3 + 8*I*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b
^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3,
 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)) - 6*(3*a^3*cos(d*x + c)^2 - 4*a^2*b*cos(d*x + c))*sqrt(
(a*cos(d*x + c) + b)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^4*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a + b \sec {\left (c + d x \right )}} \sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(5/2)/(a+b*sec(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*sec(c + d*x))*sec(c + d*x)**(5/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(5/2)/(a+b*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*sec(d*x + c) + a)*sec(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2)),x)

[Out]

int(1/((a + b/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(5/2)), x)

________________________________________________________________________________________